Near-maximum microwave absorption in a thin metal film at the pseudo-free-standing limit

Author:

Haddadi. M Mahsa,Das Bamadev,Jeong Jeeyoon,Kim Sunghwan,Kim Dai-Sik

Abstract

AbstractElectromagnetic absorbers based on ultra-thin metallic film are desirable for many applications such as plasmonics, metamaterials, and long-wavelength detectors. A metallic film will achieve a maximum 50% of electromagnetic wave absorption, frequency independent, at a thickness defined by its conductivity, typically in the sub-Angstrom range for good metals if bulk conductivity is maintained throughout. This makes it extremely difficult to obtain substantial absorption from thin metal films, in contrast to 2D materials such as graphene. Luckily, however, from a practical point of view, metal conductivity is drastically reduced as the film becomes sub-100 nm, to make it a race between the thinnest possible metal thickness experimentally achievable vs the conductivity reduction. Here, we demonstrate a near-50% absorption at a gold film thickness of 6.5 nm, with conductivity much reduced from the bulk value, down to the range of 106 Siemens per meter. Studying the effect of the substrate thickness, we found that the common cover glass, with its thickness much smaller than the wavelength, achieves symmetric absorption of 44%, implying that a pseudo-free-standing limit is achieved. Our work may find applications in infrared sensing as in bolometers and biomedical sensing using microwaves.

Funder

National Research Foundation of Korea

U−K Brand

2021 Research Fund of UNIST

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3