A comparative study of severe thunderstorm among statistical and ANN methodologies

Author:

Bhattacharya Sonia,Bhattacharyya Himadri ChakrabortyORCID

Abstract

AbstractSevere Thunderstorms are the extreme weather convective features. It causes local calamities in various ways. Proper prediction with lead time is an important factor to prevent such calamities from saving people. Here, both probabilistic and machine learning techniques are applied to weather data to obtain proper predictions. Traditional methodologies are already available for such prediction purposes. However, Naïve Bayes and RBFN (Radial Basis Function Network) methodology have been introduced here with some specific weather parameters that has not done before remarkably. A comparative study was performed on weather data including Naïve Bayes, Multilayer Perceptron (MLP), K-nearest neighbor (KNN) and Radial Basis Function Network (RBFN). All these data have been procured from Kolkata located in north-east India. The result obtained by applying the Radial Basis Function Network is better among the three methods, yielding a correct prediction of 95% for severe “squall-storms” and 94% for “no storm”. The predictions have a sufficient lead time of 10- 12 h.

Funder

Himadri Chakraborty

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3