A flow feature detection method for modeling pressure distribution around a cylinder in non-uniform flows by using a convolutional neural network

Author:

Ye Shuran,Zhang Zhen,Song Xudong,Wang Yiwei,Chen Yaosong,Huang Chenguang

Abstract

AbstractIn a myriad of engineering situations, we often hope to establish a model which can acquire load conditions around structures through flow features detection. A data-driven method is developed to predict the pressure on a cylinder from velocity distributions in its wake flow. The proposed deep learning neural network is constituted with convolutional layers and fully–connected layers: The convolutional layers can process the velocity information by features extraction, which are gathered by the fully-connected layers to obtain the pressure coefficients. By comparing the output data of the typical network with Computational Fluid Dynamics (CFD) results as reference values, it suggests that the present convolutional neural network (CNN) is able to predict the pressure coefficient in the vicinity of the trained Reynolds numbers with various inlet flow profiles and achieves a high overall precision. Moreover, a transfer learning approach is adopted to preserve the feature detection ability by keeping the parameters in the convolutional layers unchanged while shifting parameters in the fully-connected layers. Further results show that this transfer learning network has nearly the same precision while significantly lower cost. The active prospects of convolutional neural network in fluid mechanics have also been demonstrated, which can inspire more kinds of loads prediction in the future.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference21 articles.

1. Tracey, B., Duraisamy, K. & Alonso, J. J. Application of supervised learning to quantify uncertainties in turbulence and combustion modeling. In 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 2013, https://doi.org/10.2514/6.2013-259 (2013).

2. Ling, J., Kurzawski, A. & Templeton, J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. J. Fluid Mech. 807, 155–166 (2016).

3. Wang, J. X., Wu, J. L. & Xiao, H. Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data. Phys. Rev. Fluids 2, 1–22 (2017).

4. Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems 1097–1105 (Curran Associates Inc., 2012).

5. Umetani, N. & Bickel, B. Learning three-dimensional flow for interactive aerodynamic design. ACM Trans. Graph. 37 (2018).

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3