Using thermokinetic methods to enhance properties of epoxy resins with amino acids as biobased curing agents by achieving full crosslinking

Author:

Walter MelissaORCID,Neubacher Marcel,Fiedler BodoORCID

Abstract

AbstractFibre-reinforced polymers (FRPs) are used in numerous industrial sectors and contribute to reducing CO2 emissions due to their outstanding properties in lightweight design. However, sustainable alternatives must be developed since the matrix polymers utilised contain substances hazardous to health and the environment. In widely used epoxy resins, the curing agents are mainly critical. Using biomolecules instead of synthetic curing agents can significantly reduce composites' toxicity and petrol-based carbon content. This study considerably exceeds the thermo-mechanical properties of epoxies cured with amino acids described in the literature until now. It demonstrates competitive or even better properties than state-of-the-art epoxies cured with petrol-based amine curing agents. For instance, the tensile strength of arginine-cured epoxy is more than twice as high as reported before and 13.5% higher compared to the petrol-based reference. At the same time, a high elongation at break of over 6% was accomplished, making these polymers suitable as matrix materials in FRPs. Furthermore, the glass transition onset of up to 130 °C is sufficiently high for many applications. The key to success is the development of individual curing profiles based on thermokinetic analysis. The work provides the development and analysis of several biomolecule-cured epoxies with promising property spectra.

Funder

Technische Universität Hamburg

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3