Equine odontoclastic tooth resorption and hypercementosis (EOTRH): microspatial distribution of trace elements in hypercementosis-affected and unaffected hard dental tissues

Author:

Wright Alexandra L.,Earley Edward T.,Austin Christine,Arora Manish

Abstract

AbstractEquine Odontoclastic Tooth Resorption and Hypercementosis (EOTRH) is a common, painful and poorly understood disease. Enamel, dentin and cementum accumulate both essential and toxic trace elements during mineralization. Characterization of the spatial accumulation pattern of trace elements may provide insight into the role that toxic elements play and inform biological processes affecting these hard dental tissues for future research. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to map the distribution of multiple trace elements and heavy metals across equine healthy and diseased (hypercementosis-affected) hard dental tissues among four teeth extracted from horses with EOTRH. Results showed banding patterns of some trace elements (lead, strontium, barium), reflecting the temporal component of accumulation of trace elements during dentin mineralization. Essential elements zinc and magnesium did not show banding patterns. Comparison to the unaffected cementum and dentin adjacent to the hypercementosis region showed that there is an underlying incremental pattern in the uptake of some metals with spatial irregularities. This supports a possible metabolic change involved in hypercementosis lesion development. This represents the first use of LA-ICP-MS to study the microspatial distribution of trace elements in equine teeth, establishing a baseline for elemental distribution in normal and EOTRH impacted dental hard tissue.

Funder

NIH

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3