Affordable and real-time antimicrobial resistance prediction from multimodal electronic health records

Author:

Hardan Shahad,Shaaban Mai A.,Abdalla Jehad,Yaqub Mohammad

Abstract

AbstractThe spread of antimicrobial resistance (AMR) leads to challenging complications and losses of human lives plus medical resources, with a high expectancy of deterioration in the future if the problem is not controlled. From a machine learning perspective, data-driven models could aid clinicians and microbiologists by anticipating the resistance beforehand. Our study serves as the first attempt to harness deep learning (DL) techniques and the multimodal data available in electronic health records (EHR) for predicting AMR. In this work, we utilize and preprocess the MIMIC-IV database extensively to produce separate structured input sources for time-invariant and time-series data customized to the AMR task. Then, a multimodality fusion approach merges the two modalities with clinical notes to determine resistance based on an antibiotic or a pathogen. To efficiently predict AMR, our approach builds the foundation for deploying multimodal DL techniques in clinical practice, leveraging the existing patient data.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3