Benchmarking seeding strategies for spreading processes in social networks: an interplay between influencers, topologies and sizes

Author:

Montes Felipe,Jaramillo Ana María,Meisel Jose D.,Diaz-Guilera AlbertORCID,Valdivia Juan A.ORCID,Sarmiento Olga L.,Zarama Roberto

Abstract

AbstractThe explosion of network science has permitted an understanding of how the structure of social networks affects the dynamics of social contagion. In community-based interventions with spill-over effects, identifying influential spreaders may be harnessed to increase the spreading efficiency of social contagion, in terms of time needed to spread all the largest connected component of the network. Several strategies have been proved to be efficient using only data and simulation-based models in specific network topologies without a consensus of an overall result. Hence, the purpose of this paper is to benchmark the spreading efficiency of seeding strategies related to network structural properties and sizes. We simulate spreading processes on empirical and simulated social networks within a wide range of densities, clustering coefficients, and sizes. We also propose three new decentralized seeding strategies that are structurally different from well-known strategies: community hubs, ambassadors, and random hubs. We observe that the efficiency ranking of strategies varies with the network structure. In general, for sparse networks with community structure, decentralized influencers are suitable for increasing the spreading efficiency. By contrast, when the networks are denser, centralized influencers outperform. These results provide a framework for selecting efficient strategies according to different contexts in which social networks emerge.

Funder

Universidad de los Andes

U.S. Department of Health & Human Services | National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3