Author:
Martins Marta,Reis Ana Mafalda,Gaser Christian,Castro São Luís
Abstract
AbstractRhythm and motor function are intrinsically linked to each other and to music, but the rhythm-motor interplay during music training, and the corresponding brain mechanisms, are underexplored. In a longitudinal training study with children, we examined the role of rhythm predisposition in the fine motor improvements arising from music training, and which brain regions would be implicated. Fifty-seven 8-year-olds were assigned to either a 6-month music training (n = 21), sports training (n = 18), or a control group (n = 18). They performed rhythm and motor tasks, and structural brain scans before and after training were collected. Better ability to perceive rhythm before training was related to less gray matter volume in regions of the cerebellum, fusiform gyrus, supramarginal gyrus, ventral diencephalon, amygdala, and inferior/middle temporal gyri. Music training improved motor performance, and greater improvements correlated with better pre-training rhythm discrimination. Music training also induced a loss of gray matter volume in the left cerebellum and fusiform gyrus, and volume loss correlated with higher motor gains. No such effects were found in the sports and control groups. In summary, children with finer-tuned rhythm perception abilities were prone to finer motor improvements through music training, and this rhythm-motor link was to some extent subserved by the left cerebellum and fusiform gyrus. These findings have implications for models on music-related plasticity and rhythm cognition, and for programs targeting motor function.
Publisher
Springer Science and Business Media LLC