Author:
Fasola E.,Ribeiro R.,Lopes I.
Abstract
AbstractChemical contamination may cause genetic erosion in natural populations by wiping out the most sensitive genotypes. This is of upmost concern if the loss of genetic variability is irreversible due to contaminant-driven elimination of alleles, which may happen if tolerance is a recessive or incompletely dominant trait – the recessive tolerance inheritance (working-) hypothesis. Accordingly, this work investigated the tolerance inheritance to lethal levels of a metal-rich acid mine drainage (AMD) and to copper sulphate in a population of Pelophylax perezi. Time-to-death for each egg, after being exposed to 60% of a sample of acid mine drainage and to 9 mg/L Cu, was registered, and, for each egg mass, the median lethal time (LT50) and respective quartiles (LT25 and LT75) were computed. Results suggested that genetically determined tolerance could be probably driven by incomplete dominance (with possible maternal effect influence), preliminarily supporting the initial hypothesis.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献