Joint DNA-based disaster victim identification

Author:

Vigeland Magnus D.,Egeland Thore

Abstract

AbstractWe address computational and statistical aspects of DNA-based identification of victims in the aftermath of disasters. Current methods and software for such identification typically consider each victim individually, leading to suboptimal power of identification and potential inconsistencies in the statistical summary of the evidence. We resolve these problems by performing joint identification of all victims, using the complete genetic data set. Individual identification probabilities, conditional on all available information, are derived from the joint solution in the form of posterior pairing probabilities. A closed formula is obtained for the a priori number of possible joint solutions to a given DVI problem. This number increases quickly with the number of victims and missing persons, posing computational challenges for brute force approaches. We address this complexity with a preparatory sequential step aiming to reduce the search space. The examples show that realistic cases are handled efficiently. User-friendly implementations of all methods are provided in the R package dvir, freely available on all platforms.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3