A comparative analysis of using ensemble trees for botnet detection and classification in IoT

Author:

Saied Mohamed,Guirguis Shawkat,Madbouly Magda

Abstract

AbstractEnhancing IoT security is a corner stone for building trust in its technology and driving its growth. Limited resources and diversified nature of IoT devices make them vulnerable to attacks. Botnet attacks compromise the IoT systems and can pose significant security challenges. Numerous investigations have utilized machine learning and deep learning techniques to identify botnet attacks in IoT. However, achieving high detection accuracy with reasonable computational requirements is still a challenging research considering the particularity of IoT. This paper aims to analytically study the performance of the tree based machine learning in detecting botnet attacks for IoT ecosystems. Through an empirical study performed on a public botnet dataset of IoT environment, basic decision tree algorithm in addition to ensemble learning of different bagging and boosting algorithms are compared. The comparison covers two perspectives: IoT botnet detection capability and computational performance. Results demonstrated that the significant potential for the tree based ML algorithms in detecting network intrusions in IoT environments. The RF algorithm achieved the best performance for multi-class classification with accuracy rate of 0.999991. It achieved also the highest results in all other measures.

Funder

Science and Technology Development Fund

Alexandria University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3