Machine learning of pair-contact process with diffusion

Author:

Shen Jianmin,Li Wei,Deng Shengfeng,Xu Dian,Chen Shiyang,Liu Feiyi

Abstract

AbstractThe pair-contact process with diffusion (PCPD), a generalized model of the ordinary pair-contact process (PCP) without diffusion, exhibits a continuous absorbing phase transition. Unlike the PCP, whose nature of phase transition is clearly classified into the directed percolation (DP) universality class, the model of PCPD has been controversially discussed since its infancy. To our best knowledge, there is so far no consensus on whether the phase transition of the PCPD falls into the unknown university classes or else conveys a new kind of non-equilibrium phase transition. In this paper, both unsupervised and supervised learning are employed to study the PCPD with scrutiny. Firstly, two unsupervised learning methods, principal component analysis (PCA) and autoencoder, are taken. Our results show that both methods can cluster the original configurations of the model and provide reasonable estimates of thresholds. Therefore, no matter whether the non-equilibrium lattice model is a random process of unitary (for instance the DP) or binary (for instance the PCP), or whether it contains the diffusion motion of particles, unsupervised learning can capture the essential, hidden information. Beyond that, supervised learning is also applied to learning the PCPD at different diffusion rates. We proposed a more accurate numerical method to determine the spatial correlation exponent $$\nu _{\perp }$$ ν , which, to a large degree, avoids the uncertainty of data collapses through naked eyes.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

State Administration of Foreign Experts Affairs and the Ministry of Education, PRC

Key Laboratory of Quark and Lepton Physics (MOE), Central China Normal University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 机器学习在相变中的应用;SCIENTIA SINICA Physica, Mechanica & Astronomica;2023-05-01

2. Artificial Special Visual Geometry Group-16(VGG) Learning Model for Analysing Accuracy and Precision of SARS-COV-2 Forecasting;2023 International Conference on Computer Communication and Informatics (ICCCI);2023-01-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3