Molybdenum impregnated g-C3N4 nanotubes as potentially active photocatalyst for renewable energy applications

Author:

Iqbal Naseer,Afzal Adeel,Khan Ibrahim,Khan Muhammad Shahzeb,Qurashi Ahsanulhaq

Abstract

AbstractMolybdenum (Mo) impregnated g-C3N4 (Mo-CN) nanotubes are fabricated via a thermal/hydrothermal process to augment photoelectrochemical properties during solar-driven water-splitting (SDWS) reactions. Graphitic-C3N4 is an attractive material for photocatalysis because of its suitable band energy, high thermal and chemical stability. The FE-SEM and HR-TEM comprehend the nanotube-like morphology of Mo-CN. The spectroscopic characterization revealed bandgap energy of 2.63 eV with high visible-light activity. The x-ray diffraction of pristine g-C3N4 and Mo-CN nanotubes discloses the formation of triazine-based nanocrystalline g-C3N4, which remains stable during hydrothermal impregnation of Mo. Furthermore, Mo-CN nanotubes possess high sp2-hybridized nitrogen content, and metallic/oxidized Mo nanoparticles (in a ratio of 1:2) are impregnated into g-C3N4. The XPS analysis confirms C, N, and Mo for known atomic and oxidation states in Mo-CN. Furthermore, high photocurrent efficiency (~ 5.5 mA/cm2) is observed from 5%-Mo-CN nanotubes. That displays efficient SDWS by 5%-Mo-CN nanotubes than other counterparts. Impedance spectroscopy illustrated the lowest charge transfer resistance (Rct) of 5%-Mo-CN nanotubes, which further confirms the fast electron transfer kinetics and efficient charge separation resulting in high photocurrent generation. Hence, 5%Mo-CN composite nanotubes can serve as a potential photocatalytic material for viable solar-driven water splitting.

Funder

University of Hafr Al Batin, Saudi Arabia

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3