Unsupervised-learning-based method for chest MRI–CT transformation using structure constrained unsupervised generative attention networks

Author:

Matsuo Hidetoshi,Nishio Mizuho,Nogami Munenobu,Zeng Feibi,Kurimoto Takako,Kaushik Sandeep,Wiesinger Florian,Kono Atsushi K.,Murakami Takamichi

Abstract

AbstractThe integrated positron emission tomography/magnetic resonance imaging (PET/MRI) scanner simultaneously acquires metabolic information via PET and morphological information using MRI. However, attenuation correction, which is necessary for quantitative PET evaluation, is difficult as it requires the generation of attenuation-correction maps from MRI, which has no direct relationship with the gamma-ray attenuation information. MRI-based bone tissue segmentation is potentially available for attenuation correction in relatively rigid and fixed organs such as the head and pelvis regions. However, this is challenging for the chest region because of respiratory and cardiac motions in the chest, its anatomically complicated structure, and the thin bone cortex. We propose a new method using unsupervised generative attentional networks with adaptive layer-instance normalisation for image-to-image translation (U-GAT-IT), which specialised in unpaired image transformation based on attention maps for image transformation. We added the modality-independent neighbourhood descriptor (MIND) to the loss of U-GAT-IT to guarantee anatomical consistency in the image transformation between different domains. Our proposed method obtained a synthesised computed tomography of the chest. Experimental results showed that our method outperforms current approaches. The study findings suggest the possibility of synthesising clinically acceptable computed tomography images from chest MRI with minimal changes in anatomical structures without human annotation.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3