Deploying efficient net batch normalizations (BNs) for grading diabetic retinopathy severity levels from fundus images

Author:

Batool Summiya,Gilani Syed Omer,Waris Asim,Iqbal Khawaja Fahad,Khan Niaz B.,Khan M. Ijaz,Eldin Sayed M.,Awwad Fuad A.

Abstract

AbstractDiabetic retinopathy (DR) is one of the main causes of blindness in people around the world. Early diagnosis and treatment of DR can be accomplished by organizing large regular screening programs. Still, it is difficult to spot diabetic retinopathy timely because the situation might not indicate signs in the primary stages of the disease. Due to a drastic increase in diabetic patients, there is an urgent need for efficient diabetic retinopathy detecting systems. Auto-encoders, sparse coding, and limited Boltzmann machines were used as a few past deep learning (DL) techniques and features for the classification of DR. Convolutional Neural Networks (CNN) have been identified as a promising solution for detecting and classifying DR. We employ the deep learning capabilities of efficient net batch normalization (BNs) pre-trained models to automatically acquire discriminative features from fundus images. However, we successfully achieved F1 scores above 80% on all efficient net BNs in the EYE-PACS dataset (calculated F1 score for DeepDRiD another dataset) and the results are better than previous studies. In this paper, we improved the accuracy and F1 score of the efficient net BNs pre-trained models on the EYE-PACS dataset by applying a Gaussian Smooth filter and data augmentation transforms. Using our proposed technique, we have achieved F1 scores of 84% and 87% for EYE-PACS and DeepDRiD.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3