Computational fluid dynamics simulation of two-phase flow patterns in a serpentine microfluidic device

Author:

Amini Younes,Ghazanfari Valiyollah,Heydari Mehran,Shadman Mohammad Mahdi,Khamseh A. Gh.,Khani Mohammad Hassan,Hassanvand Amin

Abstract

AbstractIn the current research work, the flow behavior of a liquid–liquid extraction (LLE) process in a serpentine microchannel was analyzed. The simulation was performed using a 3D model and the results were found to be consistent with experimental data. The impact of the flow of chloroform and water on the flow model was also examined. The data indicate that once the aqua and organic phases flow rates are low and similar, a slug flow pattern is observed. However, as the overall flow rate raises, the slug flow transforms into parallel plug flow or droplet flow. An increment in the aqua flows while maintaining a constant organic phase flow rate results in a transition from slug flow to either droplet flow or plug flow. Finally, the patterns of flow rate in the serpentine micro-channel were characterized and depicted. The results of this study will provide valuable insights into the behavior of two-phase flow patterns in serpentine microfluidic devices. This information can be used to optimize the design of microfluidic devices for various applications. Furthermore, the study will demonstrate the applicability of CFD simulation in investigating the behavior of fluids in microfluidic devices, which can be a cost-effective and efficient alternative to experimental studies.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3