Machine learning classification of schizophrenia patients and healthy controls using diverse neuroanatomical markers and Ensemble methods

Author:

Chilla Geetha Soujanya,Yeow Ling Yun,Chew Qian Hui,Sim Kang,Prakash K. N. Bhanu

Abstract

AbstractSchizophrenia is a major psychiatric disorder that imposes enormous clinical burden on patients and their caregivers. Determining classification biomarkers can complement clinical measures and improve understanding of the neural basis underlying schizophrenia. Using neuroanatomical features, several machine learning based investigations have attempted to classify schizophrenia from healthy controls but the range of neuroanatomical measures employed have been limited in range to date. In this study, we sought to classify schizophrenia and healthy control cohorts using a diverse set of neuroanatomical measures (cortical and subcortical volumes, cortical areas and thickness, cortical mean curvature) and adopted Ensemble methods for better performance. Additionally, we correlated such neuroanatomical features with Quality of Life (QoL) assessment scores within the schizophrenia cohort. With Ensemble methods and diverse neuroanatomical measures, we achieved classification accuracies ranging from 83 to 87%, sensitivities and specificities varying between 90–98% and 65–70% respectively. In addition to lower QoL scores within schizophrenia cohort, significant correlations were found between specific neuroanatomical measures and psychological health, social relationship subscale domains of QoL. Our results suggest the utility of inclusion of subcortical and cortical measures and Ensemble methods to achieve better classification performance and their potential impact of parsing out neurobiological correlates of quality of life in schizophrenia.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3