Author:
Ando Jun,Murai Kazue,Mori Makiko,Michiyuki Tomoe,Iida Tatsuya,Makino Asami,Shinoda Hajime,Watanabe Rikiya
Abstract
AbstractThe global supply of fluoropolymers and fluorinated solvents is decreasing due to environmental concerns regarding polyfluoroalkyl substances. CYTOP has been used for decades primarily as a component of a femtoliter chamber array for digital bioanalysis; however, its supply has recently become scarce, increasing the urgency of fabricating a femtoliter chamber array using alternative materials. In this study, we investigated the feasibility of fabricating a femtoliter chamber array using four types of fluoropolymers in stable supply as candidate substitutes and verified their applicability for digital bioanalysis. Among these candidates, Fluorine Sealant emerged as a viable option for fabricating femtoliter chamber arrays using a conventional photolithography process. To validate its efficacy, we performed various digital bioanalysis using FP-A-based chamber arrays with model enzymes such as CRISPR–Cas, horseradish peroxidase, and β-galactosidase. The results demonstrated the similar performance to that of CYTOP, highlighting the broader utility of FP-A in digital bioanalysis. Our findings underscore the potential of FP-A to enhance the versatility of digital bioanalysis and foster the ongoing advancement of innovative diagnostic technologies.
Funder
Japan Society for the Promotion of Science
Japan Science and Technology Agency
Japan Agency for Medical Research and Development
Publisher
Springer Science and Business Media LLC