Author:
Khajanchi Subhas,Nieto Juan J.
Abstract
AbstractWe report a mathematical model which depicts the spatiotemporal dynamics of glioma cells, macrophages, cytotoxic-T-lymphocytes, immuno-suppressive cytokine TGF-β and immuno-stimulatory cytokine IFN-γ through a system of five coupled reaction-diffusion equations. We performed local stability analysis of the biologically based mathematical model for the growth of glioma cell population and their environment. The presented stability analysis of the model system demonstrates that the temporally stable positive interior steady state remains stable under the small inhomogeneous spatiotemporal perturbations. The irregular spatiotemporal dynamics of gliomas, macrophages and cytotoxic T-lymphocytes are discussed extensively and some numerical simulations are presented. Performed some numerical simulations in both one and two dimensional spaces. The occurrence of heterogeneous pattern formation of the system has both biological and mathematical implications and the concepts of glioma cell progression and invasion are considered. Simulation of the model shows that by increasing the value of time, the glioma cell population, macrophages and cytotoxic-T-lymphocytes spread throughout the domain.
Funder
Science and Engineering Research Board, India
Xunta de Galicia, Spain
European Regional Development Fund
Instituto de Salud Carlos III
Publisher
Springer Science and Business Media LLC
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献