Author:
Vicente Jan,Timmers Molly A.,Webb Maryann K.,Bahr Keisha D.,Jury Christopher P.,Toonen Robert J.
Abstract
AbstractSuccessional theory proposes that fast growing and well dispersed opportunistic species are the first to occupy available space. However, these pioneering species have relatively short life cycles and are eventually outcompeted by species that tend to be longer-lived and have lower dispersal capabilities. Using Autonomous Reef Monitoring Structures (ARMS) as standardized habitats, we examine the assembly and stages of ecological succession among sponge species with distinctive life history traits and physiologies found on cryptic coral reef habitats of Kāneʻohe Bay, Hawaiʻi. Sponge recruitment was monitored bimonthly over 2 years on ARMS deployed within a natural coral reef habitat resembling the surrounding climax community and on ARMS placed in unestablished mesocosms receiving unfiltered seawater directly from the natural reef deployment site. Fast growing haplosclerid and calcareous sponges initially recruited to and dominated the mesocosm ARMS. In contrast, only slow growing long-lived species initially recruited to the reef ARMS, suggesting that despite available space, the stage of ecological succession in the surrounding habitat influences sponge community development in uninhabited space. Sponge composition and diversity between early summer and winter months within mesocosm ARMS shifted significantly as the initially recruited short-lived calcareous and haplosclerid species initially recruit and then died off. The particulate organic carbon contribution of dead sponge tissue from this high degree of competition-free community turnover suggests a possible new component to the sponge loop hypothesis which remains to be tested among these pioneering species. This source of detritus could be significant in early community development of young coastal habitats but less so on established coral reefs where the community is dominated by long-lived colonial sponges.
Funder
National Science Foundation
National Oceanographic Atmospheric Administration
Publisher
Springer Science and Business Media LLC
Reference84 articles.
1. Rapacciuolo, G. & Blois, J. L. Understanding ecological change across large spatial, temporal and taxonomic scales: Integrating data and methods in light of theory. Ecography 42, 1247–1266 (2019).
2. Cowles, H. C. The ecological relations of the vegetation on the sand dunes of Lake Michigan. Part I. Geographical relations of the Dune Floras. Bot. Gaz. 27, 95–117 (1899).
3. Gleason, H. A. The individualistic concept of the plant association. Bull. Torrey Bot. Club 53, 7–26 (1926).
4. Denslow, J. S. Patterns of plant species diversity during succession under different disturbance regimes. Oecologia 46, 18–21 (1980).
5. Budowski, G. Studies on Forest Succession in Costa Rica und Panama. Ph.D. Thesis, Yale University, New Haven (1961).
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献