MicroRNA-495 downregulates AQP1 and facilitates proliferation and differentiation of osteoblasts in mice with tibial fracture through activation of p38 MAPK signaling pathway

Author:

Zhu Lei,Lin Zun-Wen,Wang Gang,Zhang Hong,Liu Ben,Xu Qing-Jia

Abstract

Abstract Osteoblasts are implicated in the building of the vertebrate skeleton. The current study aimed to investigate the role of microRNA-495 (miR-495) in the osteoblasts of mice with tibial fractures and the underlying mechanism involving in aquaporin-1 (AQP1) and the p38 mitogen-activated protein kinase (p38 MAPK) signaling pathway. Initially, a microarray-based analysis was performed to screen the differentially expressed genes and miRNAs associated with tibial fracture. Following the establishment of a tibial fracture mouse model, the positive rate of the AQP1 protein in the fracture tissue was detected by immunohistochemistry (IHC). Next, to verify the binding site between miR-495 on AQP1, bioinformatics data were employed in addition to the application of a dual-luciferase reporter gene assay. The osteoblast cell line MC3T3-E1 was treated with miR-495 mimic, miR-495 inhibitor and Anisomycin to explore the potent effects of miR-495 on proliferation and differentiation of osteoblasts in mice with tibial fracture. The expression of miR-495, AQP1, p38 MAPK, PCNA, Cyclin D1, OCN, and OPN was subsequently evaluated by RT-qPCR and Western blot analysis. Cell viability, the number of calcium nodules and alkaline phosphatase (ALP) activity were detected by MTT assay, alizarin red staining, and ALP activity assay, respectively. Our results revealed that miR-495 was down-regulated while AQP1 was up-regulated in the mice with tibial fractures. AQP1 was verified as a target gene of miR-495. When the cells were treated with overexpressed miR-495 or activated p38 MAPK signaling pathway, elevated expression of PCNA, Cyclin, D1, OCN, and OPN along with an increased amount of calcium nodules, higher cell viability, and enhanced ALP activity was detected, while the expression of AQP1 was reduced. Collectively, the key findings of the present study support the notion that overexpressed miR-495 may activate the p38 MAPK signaling pathway to inhibit AQP1 and to promote the proliferation and differentiation of osteoblasts in mice with tibial fracture.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3