Abstract
AbstractEnvironmentally sensitive molecular rotors are widely used to probe the local molecular environment in e.g. polymer solutions, polymer glasses, and biological systems. These applications make it important to understand its fluorescence properties in the vicinity of a solid surface, since fluorescence microscopy generically employs cover slides, and measurements are often done in its immediate vicinity. Here, we use a confocal microscope to investigate the fluorescence of (4-daspi) in glycerol/water solutions close to the interface using hydrophilic or hydrophobic cover slips. Despite the dye’s high solubility in water, the observed lengthening of the fluorescence lifetime close to the hydrophobic surface, implies a surprising affinity of the dye with the surface. Because the homogeneous solution and the refractive index mismatch reduces the optical sectioning power of the microscope, we quantify the affinity with the help of a simple model of the signal vs. depth of focus, exhibiting surface and bulk contributions. The model reduces artefacts due to refractive index mismatch, as supported by Monte Carlo ray tracing simulations.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献