Modulation of NaCl-induced osmotic, cytogenetic, oxidative and anatomic damages by coronatine treatment in onion (Allium cepa L.)

Author:

Çavuşoğlu Dilek

Abstract

AbstractCoronatine (COR), a bacterial phytotoxin produced by Pseudomonas syringae, plays important roles in many plant growth processes. Onion bulbs were divided four groups to investigate the effects of COR against sodium chloride (NaCl) stress exposure in Allium cepa L. root tips. While control group bulbs were soaked in tap water medium, treatment group bulbs were grown in 0.15 M NaCl, 0.01 µM COR and 0.01 µM COR + 0.15 M NaCl medium, respectively. NaCl stress seriously inhibited the germination, root lenght, root number and fresh weight of the bulbs. It significantly decreased the mitotic index (MI), whereas dramatically increased the micronucleus (MN) frequency and chromosomal aberrations (CAs). Moreover, in order to determine the level of lipid peroxidation occurring in the cell membrane, malondialdehyde (MDA) content was measured and it was determined that it was at the highest level in the group germinated in NaCl medium alone. Similarly, it was revealed that the superoxide dismutase (SOD), catalase (CAT) and free proline contents in the group germinated in NaCl medium alone were higher than the other groups. On the other hand, NaCl stress caused significant injuries such as epidermis/cortex cell damage, MN formation in epidermis/cortex cells, flattened cells nuclei, unclear vascular tissue, cortex cell wall thickening, accumulation of certain chemical compounds in cortex cells and necrotic areas in the anatomical structure of bulb roots. However, exogenous COR application significantly alleviated the negative effects of NaCl stress on bulb germination and growth, antioxidant defense system, cytogenetic and anatomical structure. Thus, it has been proven that COR can be used as a protective agent against the harmful effects of NaCl on onion.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3