Outdoor mm-wave 5G/6G transmission with adaptive analog beamforming and IFoF fronthaul

Author:

Pérez Santacruz Javier,Meyer Elmine,Budé Roel X. F.,Stan Catalina,Jurado-Navas Antonio,Johannsen Ulf,Tafur Monroy Idelfonso,Rommel Simon

Abstract

AbstractAdaptive analog beamforming is a key technology to enable spatial control of millimeter-wave wireless signals radiated from phased array antennas (PAAs) which is essential to maximize the capacity of future mobile networks and to ensure efficient usage of scarce spectrum. Intermediate frequency-over-fiber (IFoF), on the other hand, is a promising technology for the millimeter-wave (mm-wave) mobile fronthaul due to its low complexity, high optical spectral efficiency, and low latency. The combination of IFoF and PAA is key to implement mm-wave mobile communications in a scalable, centralized, efficient, and reliable manner. This work presents, for the first time to the best of the authors’ knowledge, an extensive outdoor measurement campaign where an experimental IFoF mm-wave wireless setup is evaluated by using PAAs with adaptive beamforming on the transmitter and receiver sides. The configuration of the experimental setup is according to 5G standards, transmitting signals wirelessly at 27 GHz central frequency in the n258 band. The employed PAAs are composed of 8-by-8 patch antenna arrays, allowing beam steering in the azimuth and elevation angles. Furthermore, different end-user locations, antenna configurations, and wireless scenarios are tested in the outdoor experiment, showing excellent EVM performance and achieving 64-QAM transmission over up to 165.5 m at up to 1.88 Gbit/s. The experimental results enable optimization of the experimental setup for different scenarios and prove the system’s reliability in different wireless conditions. In addition, the results of this work prove the viability and potential of IFoF combined with PAA to be part of the future 5G/6G structure.

Funder

H2020 Marie Skłodowska-Curie Actions

H2020 LEIT Information and Communication Technologies

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3