Author:
Morgan Christopher P.,Meadows Victoria E.,Marx-Rattner Ruth,Cisse Yasmine M.,Bale Tracy L.
Abstract
AbstractExtracellular vesicles (EVs) are a unique mode of intercellular communication capable of specificity in transmitting signals and cargo to coordinate local and distant cellular functions. A key example of this is the essential role that EVs secreted by epithelial cells lining the lumen of the male reproductive tract play in post-spermatogenic sperm maturation. We recently showed in a preclinical mouse model that this fundamental process had a causal role in somatic-to-germline transmission of biological information regarding prior stress experience capable of altering the rate of fetal development. However, critical mechanistic questions remain unanswered as to the processes by which signaling occurs between EVs and sperm, and whether EVs or their cargo are delivered at conception and are detectable in the early embryo. Unfortunately, notable methodological limitations shared across EV biology, particularly in the isolation and labeling of EVs, complicate efforts to answer these important questions as well as questions on EV targeting specificity and mechanisms. In our current studies, we developed a novel approach to track EVs using a conditional transgenic construct designed to label EVs via conditional Cre-induced hemagglutinin (HA) tagging of the EV endogenous tetraspanin, CD63. In our exhaustive validation steps, this internal small molecular weight tag did not affect EV secretion or functionality, a common problem found in the previous design of EV tags using larger molecular weight proteins, including fluorescent proteins. Utilizing a stably transfected immortalized epididymal epithelial cell line, we first validated key parameters of the conditional HA-tagged protein packaged into secreted EVs. Importantly, we systematically confirmed that expression of the CD63-HA had no impact on the production, size distribution, or surface charge of secreted EVs, nor did it alter the tetraspanin or miRNA composition of these EVs. We also utilized the CD63-HA EVs to verify physical interactions with sperm. Finally, using in vitro fertilization we produced some of the first images confirming sperm delivered EV cargo at conception and still detectable in the early-stage embryo. As such, this construct serves as a methodological advance and as a valuable tool, with applications in the study of EV function across biomedical research areas.
Funder
National Institute of Environmental Health Sciences
Eunice Kennedy Shriver National Institute of Child Health and Human Development
National Institute of Mental Health
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献