An Experimental Investigation on the Kinetics of Integrated Methane Recovery and CO2 Sequestration by Injection of Flue Gas into Permafrost Methane Hydrate Reservoirs

Author:

Hassanpouryouzband Aliakbar,Yang Jinhai,Okwananke Anthony,Burgass Rod,Tohidi Bahman,Chuvilin Evgeny,Istomin Vladimir,Bukhanov Boris

Abstract

Abstract Large hydrate reservoirs in the Arctic regions could provide great potentials for recovery of methane and geological storage of CO2. In this study, injection of flue gas into permafrost gas hydrates reservoirs has been studied in order to evaluate its use in energy recovery and CO2 sequestration based on the premise that it could significantly lower costs relative to other technologies available today. We have carried out a series of real-time scale experiments under realistic conditions at temperatures between 261.2 and 284.2 K and at optimum pressures defined in our previous work, in order to characterize the kinetics of the process and evaluate efficiency. Results show that the kinetics of methane release from methane hydrate and CO2 extracted from flue gas strongly depend on hydrate reservoir temperatures. The experiment at 261.2 K yielded a capture of 81.9% CO2 present in the injected flue gas, and an increase in the CH4 concentration in the gas phase up to 60.7 mol%, 93.3 mol%, and 98.2 mol% at optimum pressures, after depressurizing the system to dissociate CH4 hydrate and after depressurizing the system to CO2 hydrate dissociation point, respectively. This is significantly better than the maximum efficiency reported in the literature for both CO2 sequestration and methane recovery using flue gas injection, demonstrating the economic feasibility of direct injection flue gas into hydrate reservoirs in permafrost for methane recovery and geological capture and storage of CO2. Finally, the thermal stability of stored CO2 was investigated by heating the system and it is concluded that presence of N2 in the injection gas provides another safety factor for the stored CO2 in case of temperature change.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference36 articles.

1. Kvenvolden, K. A. & Lorenson, T. D. The Global Occurrence of Natural Gas Hydrate. In Geophysical Monograph Series 124, 3–18 (2013).

2. Yang, S. H. B., Linga, P., Chong, Z. R., Babu, P. & Li, X.-S. Review of natural gas hydrates as an energy resource: Prospects and challenges. Appl. Energy 162, 1633–1652 (2015).

3. House, K. Z., Schrag, D. P., Harvey, C. F. & Lackner, K. S. Permanent carbon dioxide storage in deep-sea sediments. Proc. Natl. Acad. Sci. 103, 12291–12295 (2006).

4. Sloan, E. D. Fundamental principles and applications of natural gas hydrates. Nature 426, 353–359 (2003).

5. Yin, Z., Moridis, G., Chong, Z. R., Tan, H. K. & Linga, P. Numerical Analysis of Experiments on Thermally Induced Dissociation of Methane Hydrates in Porous Media. Ind. Eng. Chem. Res. 57, 5776–5791 (2018).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3