Author:
Hassanpouryouzband Aliakbar,Yang Jinhai,Okwananke Anthony,Burgass Rod,Tohidi Bahman,Chuvilin Evgeny,Istomin Vladimir,Bukhanov Boris
Abstract
Abstract
Large hydrate reservoirs in the Arctic regions could provide great potentials for recovery of methane and geological storage of CO2. In this study, injection of flue gas into permafrost gas hydrates reservoirs has been studied in order to evaluate its use in energy recovery and CO2 sequestration based on the premise that it could significantly lower costs relative to other technologies available today. We have carried out a series of real-time scale experiments under realistic conditions at temperatures between 261.2 and 284.2 K and at optimum pressures defined in our previous work, in order to characterize the kinetics of the process and evaluate efficiency. Results show that the kinetics of methane release from methane hydrate and CO2 extracted from flue gas strongly depend on hydrate reservoir temperatures. The experiment at 261.2 K yielded a capture of 81.9% CO2 present in the injected flue gas, and an increase in the CH4 concentration in the gas phase up to 60.7 mol%, 93.3 mol%, and 98.2 mol% at optimum pressures, after depressurizing the system to dissociate CH4 hydrate and after depressurizing the system to CO2 hydrate dissociation point, respectively. This is significantly better than the maximum efficiency reported in the literature for both CO2 sequestration and methane recovery using flue gas injection, demonstrating the economic feasibility of direct injection flue gas into hydrate reservoirs in permafrost for methane recovery and geological capture and storage of CO2. Finally, the thermal stability of stored CO2 was investigated by heating the system and it is concluded that presence of N2 in the injection gas provides another safety factor for the stored CO2 in case of temperature change.
Publisher
Springer Science and Business Media LLC
Reference36 articles.
1. Kvenvolden, K. A. & Lorenson, T. D. The Global Occurrence of Natural Gas Hydrate. In Geophysical Monograph Series 124, 3–18 (2013).
2. Yang, S. H. B., Linga, P., Chong, Z. R., Babu, P. & Li, X.-S. Review of natural gas hydrates as an energy resource: Prospects and challenges. Appl. Energy 162, 1633–1652 (2015).
3. House, K. Z., Schrag, D. P., Harvey, C. F. & Lackner, K. S. Permanent carbon dioxide storage in deep-sea sediments. Proc. Natl. Acad. Sci. 103, 12291–12295 (2006).
4. Sloan, E. D. Fundamental principles and applications of natural gas hydrates. Nature 426, 353–359 (2003).
5. Yin, Z., Moridis, G., Chong, Z. R., Tan, H. K. & Linga, P. Numerical Analysis of Experiments on Thermally Induced Dissociation of Methane Hydrates in Porous Media. Ind. Eng. Chem. Res. 57, 5776–5791 (2018).
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献