Field generated nematic microflows via backflow mechanism

Author:

Kos ŽigaORCID,Ravnik MihaORCID

Abstract

AbstractGeneration of flow is an important aspect in microfluidic applications and generally relies on external pumps or embedded moving mechanical parts which pose distinct limitations and protocols on the use of microfluidic systems. A possible approach to avoid moving mechanical parts is to generate flow by changing some selected property or structure of the fluid. In fluids with internal orientational order such as nematic liquid crystals, this process of flow generation is known as the backflow effect. In this article, we demonstrate the contact-free generation of microfluidic material flows in nematic fluids -including directed contact-free pumping- by external electric and optical fields based on the dynamic backflow coupling between nematic order and material flow. Using numerical modelling, we design efficient shaping and driving of the backflow-generated material flow using spatial profiles and time modulations of electric fields with oscillating amplitude, rotating electric fields and optical fields. Particularly, we demonstrate how such periodic external fields generate efficient net average nematic flows through a microfluidic channel, that avoid usual invariance under time-reversal limitations. We show that a laser beam with rotating linear polarization can create a vortex-like flow structure and can act as a local flow pump without moving mechanical parts. The work could be used for advanced microfluidic applications, possibly by creating custom microfluidic pathways without predefined channels based on the adaptivity of an optical set-up, with a far reaching unconventional idea to realize channel-less microfluidics.

Funder

Javna Agencija za Raziskovalno Dejavnost RS

Ministrstvo za visoko šolstvo, znanost in tehnologijo

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3