The complex case of Macaronichnus trace fossil affecting rock porosity

Author:

Dorador Javier,Rodríguez-Tovar Francisco J.,Miguez-Salas Olmo

Abstract

AbstractBioturbation is an important factor for reservoir quality due to the modification of host rock petrophysical properties (i.e., porosity, permeability, and connectivity). However, there is no predictable relationship between bioturbation and its effect on rock properties, due to the variability of the involved ichnological features. A detailed ichnological analysis is necessary to determine how bioturbation affects petrophysical properties in a bioturbated reservoir. Traditionally, ichnological features such as density, tiering, size, orientation, architecture, and fill, have been considered. However, other properties have been undervalued as is the case of lining. Here, we present a detailed study on the effects of Macaronichnus burrows, an ichnotaxon usually related to hydrocarbon exploration due to its high concentration in rock notably affecting petrophysical properties. Macaronichnus, a subhorizontal cylindrical burrow, is characterized by a well-defined and developed outer rim surrounding the tube core. Our data indicates a clear zonation in porosity according to burrow structure, with the lowest porosity in the tube core and higher values associated with the surrounded rim. This duality is determined by the tracemaker grain selective feeding activity and the consequent concentrated cementation. The organism concentrates the lighter minerals in the tube core fill during feeding, favoring post-depositional cementation during diagenesis and this results in lower porosity than the host rock. However, heavy minerals, mainly glauconite, are located in the rim, showing higher porosity. Our results support the view that ichnological analyses are essential to determine reservoir quality in bioturbated reservoirs, evidencing that other ichnological properties in addition to those traditionally considered must be evaluated.

Funder

Horizon 2020 Framework Programme

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3