A complexity efficient penta-diagonal quantum smoothing filter for bio-medical signal denoising: a study on ECG

Author:

Laskar Mostafizur Rahaman,Pratiher Sawon,Dutta Amit Kumar,Ghosh Nirmalya,Patra Amit

Abstract

AbstractExtracting information-bearing signal from a noisy environment has been a practical challenge in both classical and quantum computing formalism, especially in critical signal processing applications. To filter out the effect of noise, we propose a quantum smoothing filter built upon quantum formalism-based circuits applied for electrocardiogram signal denoising. The proposed quantum filter is a conceptually novel framework with an advantage in computational complexity as compared to the existing classical filters, such as discrete wavelet transform and empirical mode decomposition, whereas it achieves similar performance metrics for the accuracy of the filter. Further, we exploit the penta-diagonal Toeplitz structure of the smoothing filter, which gives approximately $$48\%$$ 48 % gate cost reduction for 10 qubit circuit compared to the standard Hamiltonian simulation without structure. The run-time complexity using the quantum matrix inversion technique for the structured matrix is given by $$\tilde{{\mathscr {O}}}\left( \frac{\kappa ^2 \text {poly}(\log {N})}{\varepsilon _P}\right)$$ O ~ κ 2 poly ( log N ) ε P for condition number $$\kappa$$ κ of the $$N\times N$$ N × N filter matrix within precision $$\varepsilon _P$$ ε P . Embedding fixed sparsity of the banded matrix, the quantum filter shows potentially better run-time complexity than classical filtering techniques. For the quantifiable research results of our work, we have shown several performance metrics, such as mean-square error and peak signal-to-noise ratio analysis, with a bound of error due to observation noise, simulation error and quantum measurement uncertainty.

Funder

Indian Institute of Technology Kharagpur

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3