Large red cell-derived membrane particles are major contributors to hypercoagulability in sickle cell disease

Author:

Smith Rachel A.,Mankelow Tosti J.,Drizou Despoina,Bullock Thomas,Latham Tom,Trompeter Sara,Blair Allison,Anstee David J.

Abstract

AbstractSickle cell disease (SCD) is one of the most common inherited single gene disorders. Polymerisation of sickle hemoglobin results in erythrocytes that are inflexible and adherent, leading to coagulation, vascular and cellular activation and resultant blood vessel blockage. Previous studies have observed elevated numbers of red cell-derived particles (RCDP), also denoted extracellular vesicles, in SCD plasma. Here, imaging flow cytometry was used to quantify all RCDP in SCD plasma. A more heterogenous population of RCDP was observed than previously reported. Significantly, large right side-out red cell macrovesicles (MaV), 7 µm in diameter, were identified. Most RCDP were right side-out but a minor population of inside-out vesicles was also present. Electron micrographs confirmed the heterogenous nature of the RCDP detected. All MaV are decorated with prothrombotic phosphatidylserine (PS) and their removal from plasma lengthened clotting times by more than three-fold. Removal of all right side-out RCDP from SCD patient plasma samples resulted in a seven-fold increase in clotting time. These results indicate that MaV comprise a large area of prothrombotic membrane and are thus major contributors to hypercoagulation in SCD. Consequently, controlled removal of MaV and PS exposed RCDP from plasma could provide a novel therapy for managing this disease.

Funder

National Institute for Health Research

National Health Service Blood and Transplant research and development grant

Wellcome Trust

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3