Asynchronous recovery of predators and prey conditions resilience to drought in a neotropical ecosystem

Author:

Ruiz Thomas,Carrias Jean-François,Bonhomme Camille,Farjalla Vinicius F.,Jassey Vincent E. J.,Leflaive Joséphine,Compin Arthur,Leroy Céline,Corbara Bruno,Srivastava Diane S.,Céréghino Régis

Abstract

AbstractThe predicted increase in the intensity and frequency of drought events associated with global climate change will impose severe hydrological stress to freshwater ecosystems, potentially altering their structure and function. Unlike freshwater communities’ direct response to drought, their post-drought recovery capacities remain understudied despite being an essential component driving ecosystem resilience. Here we used tank bromeliad as model ecosystem to emulate droughts of different duration and then assess the recovery capacities of ecosystem structure and function. We followed macroinvertebrate predator and prey biomass to characterize the recovery dynamics of trophic structure (i.e. predator–prey biomass ratio) during the post-drought rewetting phase. We showed that drought significantly affects the trophic structure of macroinvertebrates by reducing the predator–prey biomass ratio. The asynchronous recovery of predator and prey biomass appeared as a critical driver of the post-drought recovery trajectory of trophic structure. Litter decomposition rate, which is an essential ecosystem function, remained stable after drought events, indicating the presence of compensatory effects between detritivores biomass and detritivores feeding activity. We conclude that, in a context of global change, the asynchrony in post-drought recovery of different trophic levels may impact the overall drought resilience of small freshwater ecosystems in a more complex way than expected.

Funder

Agence Nationale de la Recherche

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3