Machine learning-guided determination of Acinetobacter density in waterbodies receiving municipal and hospital wastewater effluents

Author:

Ekundayo Temitope C.,Adewoyin Mary A.,Ijabadeniyi Oluwatosin A.,Igbinosa Etinosa O.,Okoh Anthony I.

Abstract

AbstractA smart artificial intelligent system (SAIS) for Acinetobacter density (AD) enumeration in waterbodies represents an invaluable strategy for avoidance of repetitive, laborious, and time-consuming routines associated with its determination. This study aimed to predict AD in waterbodies using machine learning (ML). AD and physicochemical variables (PVs) data from three rivers monitored via standard protocols in a year-long study were fitted to 18 ML algorithms. The models’ performance was assayed using regression metrics. The average pH, EC, TDS, salinity, temperature, TSS, TBS, DO, BOD, and AD was 7.76 ± 0.02, 218.66 ± 4.76 µS/cm, 110.53 ± 2.36 mg/L, 0.10 ± 0.00 PSU, 17.29 ± 0.21 °C, 80.17 ± 5.09 mg/L, 87.51 ± 5.41 NTU, 8.82 ± 0.04 mg/L, 4.00 ± 0.10 mg/L, and 3.19 ± 0.03 log CFU/100 mL respectively. While the contributions of PVs differed in values, AD predicted value by XGB [3.1792 (1.1040–4.5828)] and Cubist [3.1736 (1.1012–4.5300)] outshined other algorithms. Also, XGB (MSE = 0.0059, RMSE = 0.0770; R2 = 0.9912; MAD = 0.0440) and Cubist (MSE = 0.0117, RMSE = 0.1081, R2 = 0.9827; MAD = 0.0437) ranked first and second respectively, in predicting AD. Temperature was the most important feature in predicting AD and ranked first by 10/18 ML-algorithms accounting for 43.00–83.30% mean dropout RMSE loss after 1000 permutations. The two models' partial dependence and residual diagnostics sensitivity revealed their efficient AD prognosticating accuracies in waterbodies. In conclusion, a fully developed XGB/Cubist/XGB-Cubist ensemble/web SAIS app for AD monitoring in waterbodies could be deployed to shorten turnaround time in deciding microbiological quality of waterbodies for irrigation and other purposes.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3