Comparison of resistive capacitive energy transfer therapy on cadaveric molars and incisors with and without implants

Author:

Pérez-Bellmunt Albert,Caballé-Serrano Jordi,Rodríguez-Sanz Jacobo,Hidalgo-García César,González-Rueda Vanessa,Gassó-Villarejo Sergi,Zegarra-Chávez Daniel,López-de-Celis Carlos

Abstract

AbstractCapacitive–resistive energy transfer therapy (CRet) is used to improve the rehabilitation of different injuries. This study aimed to evaluate and compare the changes in temperature and current flow during different CRet applications on upper and lower molars and incisors, with and without implants, on ten cryopreserved corpses. Temperatures were taken on molars and incisors with invasive devices and skin temperature was taken with a digital thermometer at the beginning and after treatments. Four interventions: 15 VA capacitive hypothermic (CAPH), 8 watts resistive (RES8), 20 watts resistive (RES20) and 75 VA capacitive (CAP75) were performed for 5 min each. All treatments in this study generated current flow (more than 0.00005 A/m2) and did not generate a significant temperature increase (p > 0.05). However, RES20 application slightly increased surface temperature on incisors without implants (p = 0.010), and molar with (p = 0.001) and without implant (p = 0.008). Also, CAP75 application increased surface temperature on molars with implant (p = 0.002) and upper incisor with implant (p = 0.001). In conclusion, RES8 and CAPH applications seem to be the best options to achieve current flow without an increase in temperature on molars and incisors with and without implants.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of Percutaneous Needle Electrolysis Does Not Elicit Temperature Changes: An In Vitro Cadaveric Study;International Journal of Environmental Research and Public Health;2022-11-26

2. The Thermal Influence of an Electromagnetic Field with a Radio Frequency Depending on the Type of Electrode Used;International Journal of Environmental Research and Public Health;2022-09-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3