Climate change or irrigated agriculture – what drives the water level decline of Lake Urmia

Author:

Schulz StephanORCID,Darehshouri Sahand,Hassanzadeh Elmira,Tajrishy Massoud,Schüth Christoph

Abstract

AbstractLake Urmia is one of the largest hypersaline lakes on earth with a unique biodiversity. Over the past two decades the lake water level declined dramatically, threatening the functionality of the lake’s ecosystems. There is a controversial debate about the reasons for this decline, with either mismanagement of the water resources, or climatic changes assumed to be the main cause. In this study we quantified the water budget components of Lake Urmia and analyzed their temporal evolution and interplay over the last five decades. With this we can show that variations of Lake Urmia’s water level during the analyzed period were mainly triggered by climatic changes. However, under the current climatic conditions agricultural water extraction volumes are significant compared to the remaining surface water inflow volumes. Changes in agricultural water withdrawal would have a significant impact on the lake volume and could either stabilize the lake, or lead to its complete collapse.

Funder

State funded

Deutscher Akademischer Austauschdienst

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3