An Effective Way for Simulating Oceanic Turbulence Channel on the Beam Carrying Orbital Angular Momentum

Author:

Pan Sunxiang,Wang Le,Wang Wennai,Zhao Shengmei

Abstract

Abstract In this paper, we present an effective way for simulating oceanic turbulence channel on the beam carrying orbital angular momentum (OAM). The influence caused by oceanic turbulence channel on the phase and intensity of the propagation beam is equivalent to that the beam passing through several individual phase screens generated by power spectrum inversion method at regular intervals. A modified subharmonic compensation method is then further balance the phase screen for the losses of lower frequency components in the power spectrum inversion method. The feasibility is verified by the theoretical phase structure function and the propagation characteristics of an OAM beam in underwater environment. The results show that the phase structure function and the propagation characteristics of the OAM beam evaluated by the phase screen model all coincide with those theoretical results at high spatial frequency. Simultaneously, the low frequency components could be effectively compensated by the modified subharmonic method. With the increase of the subharmonic order and sample level, the performance evaluated by the phase screen model are closer to the theoretical ones. It has provided an effective way for simulating oceanic turbulence channel for the underwater optical communications.

Funder

Postgraduate Research \& Practice Innovation Program of Jiangsu Province

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3