Direct and remote induced actuation in artificial muscles based on electrospun fiber networks

Author:

Bunea Mihaela-Cristina,Beregoi Mihaela,Evanghelidis Alexandru,Galatanu Andrei,Enculescu Ionut

Abstract

AbstractThe present work reports a new configuration of soft artificial muscle based on a web of metal covered nylon 6/6 micrometric fibers attached to a thin polydimethylsiloxane (PDMS) film. The preparation process is simple and implies the attachment of metalized fiber networks to a PDMS sheet substrate while heating and applying compression. The resulting composite is versatile and can be cut in different shapes as a function of the application sought. When an electric current passes through the metallic web, heat is produced, leading to local dilatation and to subsequent controlled deformation. Because of this, the artificial muscle displays a fast and ample movement (maximum displacement of 0.8 cm) when applying a relatively low voltage (2.2 V), a consequence of the contrast between the thermal expanse coefficients of the PDMS substrate and of the web-like electrode. It was shown that the electrical current producing this effect can originate from both direct electric contacts, and untethered configurations i.e. radio frequency induced. Usually, for thermal activated actuators the heating is produced by using metallic films or conductive carbon-based materials, while here a fast heating/cooling process is obtained by using microfiber-based heaters. This new approach for untethered devices is an interesting path to follow, opening a wide range of applications were autonomous actuation and remote transfer of energy are needed.

Funder

Ministry of Research, Romania

Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3