Severe and frequent extreme weather events undermine economic adaptation gains of tree-species diversification

Author:

Fuchs Jasper M.,Husmann Kai,Schick Jan,Albert Matthias,Lintunen Jussi,Paul Carola

Abstract

AbstractForests and their provision of ecosystem services are endangered by climate change. Tree-species diversification has been identified as a key adaptation strategy to balance economic risks and returns in forest stands. Yet, whether this synergy between ecology and economics persists under large-scale extreme weather events remains unanswered. Our model accounts for both, small-scale disturbances in individual stands and extreme weather events that cause spatio-temporally correlated disturbances in a large number of neighboring stands. It economically optimizes stand-type allocations in a large forest enterprise with multiple planning units. Novel components are: spatially explicit site heterogeneity and a comparison of economic diversification strategies under local and regionally coordinated planning by simplified measures for $$\alpha$$ α , $$\beta$$ β , and $$\gamma$$ γ -diversity of stand types. $$\alpha$$ α -diversity refers to the number and evenness of stand types in local planning units, $$\beta$$ β -diversity to the dissimilarity of the species composition across planning units, and $$\gamma$$ γ -diversity to the number and evenness of stand types in the entire enterprise. Local planning led to stand-type diversification within planning units ($$\alpha$$ α -diversity), while regionally coordinated planning led to diversification across planning units ($$\beta$$ β -diversity). We observed a trend towards homogenization of stand-type composition likely selected under economic objectives with increasing extreme weather events. No diversification strategy fully buffered the adverse economic consequences. This led to fatalistic decisions, i.e., selecting stand types with low investment risks but also low resistance to disturbances. The resulting forest structures indicate potential adverse consequences for other ecosystem services. We conclude that high tree-species diversity may not necessarily buffer economic consequences of extreme weather events. Forest policies reducing forest owners’ investment risks are needed to establish stable forests that provide multiple ecosystem services.

Funder

Bundesministerium f ür Bildung und Forschung

Academy of Finland

Agence Nationale de la Recherche

BiodivClim ERA-Net Cofund

European Commission

Deutsche Forschungsgemeinschaft

Georg-August-Universität Göttingen

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3