Author:
Daneshyan Sahar,Sodeifian Gholamhossein
Abstract
AbstractIn this study, cyclic poly (N-isopropylacrylamide) (cPNIPAAM) was synthesized in supercritical carbon dioxide (SC-CO2) using emulsion and homogeneous reactions for the first time. This was accomplished by applying free radical polymerization and nitroxide compounds to produce low molecular weight precursors in the SC-CO2 solvent. The cyclization reaction occurred in a homogeneous phase in the SC-CO2 solvent, with dimethylformamide (DMF) serving as a co-solvent for dissolving the linear precursor. This reaction was also conducted in emulsion of SC-CO2 in water. The effects of pressure and time on the morphology, molecular weight, and yield of a difunctionalized chain were investigated, where a higher pressure led to a higher yield. The maximum yield was 64% at 23 MPa, and the chain molecular weight (Mw) was 4368 (gr/mol). Additionally, a lower pressure reduced the solubility of materials (particularly terminator) in SC-CO2 and resulted in a chain with a higher molecular weight 9326 (gr/mol), leading to a lower conversion. Furthermore, the effect of cyclization reaction types on the properties of cyclic polymers was investigated. In cyclic reactions, the addition of DMF as a co-solvent resulted in the formation of a polymer with a high viscosity average molecular weight (Mv) and a high degree of cyclization (100%), whereas the CO2/water emulsion resulted in the formation of a polymer with a lower Mv and increased porosity. Polymers were characterized by 1HNMR, FTIR, DSC, TLC, GPC, and viscometry tests. The results were presented and thoroughly discussed.
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献