Chemical signatures of femoral pore secretions in two syntopic but reproductively isolated species of Galápagos land iguanas (Conolophus marthae and C. subcristatus)

Author:

Colosimo Giuliano,Di Marco Gabriele,D’Agostino Alessia,Gismondi Angelo,Vera Carlos A.,Gerber Glenn P.,Scardi Michele,Canini Antonella,Gentile Gabriele

Abstract

AbstractThe only known population of Conolophus marthae (Reptilia, Iguanidae) and a population of C. subcristatus are syntopic on Wolf Volcano (Isabela Island, Galápagos). No gene flow occurs suggesting that effective reproductive isolating mechanisms exist between these two species. Chemical signature of femoral pore secretions is important for intra- and inter-specific chemical communication in squamates. As a first step towards testing the hypothesis that chemical signals could mediate reproductive isolation between C. marthae and C. subcristatus, we compared the chemical profiles of femoral gland exudate from adults caught on Wolf Volcano. We compared data from three different years and focused on two years in particular when femoral gland exudate was collected from adults during the reproductive season. Samples were processed using Gas Chromatography coupled with Mass Spectrometry (GC–MS). We identified over 100 different chemical compounds. Non-Metric Multidimensional Scaling (nMDS) was used to graphically represent the similarity among individuals based on their chemical profiles. Results from non-parametric statistical tests indicate that the separation between the two species is significant, suggesting that the chemical profile signatures of the two species may help prevent hybridization between C. marthae and C. subcristatus. Further investigation is needed to better resolve environmental influence and temporal reproductive patterns in determining the variation of biochemical profiles in both species.

Funder

Post-Doctoral Research Fellowship from the San Diego Zoo Institute for Conservation Research funded by the Kenneth and Anne Griffin Foundation

Mohamed bin Zayed Species Fund

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3