Audio-visual modelling in a clinical setting

Author:

Jiao Jianbo,Alsharid Mohammad,Drukker Lior,Papageorghiou Aris T.,Zisserman Andrew,Noble J. Alison

Abstract

AbstractAuditory and visual signals are two primary perception modalities that are usually present together and correlate with each other, not only in natural environments but also in clinical settings. However, audio-visual modelling in the latter case can be more challenging, due to the different sources of audio/video signals and the noise (both signal-level and semantic-level) in auditory signals—usually speech audio. In this study, we consider audio-visual modelling in a clinical setting, providing a solution to learn medical representations that benefit various clinical tasks, without relying on dense supervisory annotations from human experts for the model training. A simple yet effective multi-modal self-supervised learning framework is presented for this purpose. The proposed approach is able to help find standard anatomical planes, predict the focusing position of sonographer’s eyes, and localise anatomical regions of interest during ultrasound imaging. Experimental analysis on a large-scale clinical multi-modal ultrasound video dataset show that the proposed novel representation learning method provides good transferable anatomical representations that boost the performance of automated downstream clinical tasks, even outperforming fully-supervised solutions. Being able to learn such medical representations in a self-supervised manner will contribute to several aspects including a better understanding of obstetric imaging, training new sonographers, more effective assistive tools for human experts, and enhancement of the clinical workflow.

Funder

Engineering and Physical Sciences Research Council

European Research Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3