Abstract
AbstractThe objective of the present study was to discover the genetic variants, functional candidate genes, biological processes and molecular functions underlying the negative genetic correlation observed between body weight (BW) and egg number (EN) traits in female broilers. To this end, first a bivariate genome-wide association and second stepwise conditional-joint analyses were performed using 2586 female broilers and 240 k autosomal SNPs. The aforementioned analyses resulted in a total number of 49 independent cross-phenotype (CP) significant SNPs with 35 independent markers showing antagonistic action i.e., positive effects on one trait and negative effects on the other trait. A number of 33 independent CP SNPs were located within 26 and 14 protein coding and long non-coding RNA genes, respectively. Furthermore, 26 independent markers were situated within 44 reported QTLs, most of them related to growth traits. Investigation of the functional role of protein coding genes via pathway and gene ontology analyses highlighted four candidates (CPEB3, ACVR1, MAST2 and CACNA1H) as most plausible pleiotropic genes for the traits under study. Three candidates (CPEB3, MAST2 and CACNA1H) were associated with antagonistic pleiotropy, while ACVR1 with synergistic pleiotropic action. Current results provide a novel insight into the biological mechanism of the genetic trade-off between growth and reproduction, in broilers.
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献