Abstract
AbstractIn this study we performed a step-wise optimization of biologically active IL-2 for delivery using E. coli Nissle 1917. Engineering of the strain was coupled with an in vitro cell assay to measure the biological activity of microbially produced IL-2 (mi-IL2). Next, we assessed the immune modulatory potential of mi-IL2 using a 3D tumor spheroid model demonstrating a strong effect on immune cell activation. Finally, we evaluated the anticancer properties of the engineered strain in a murine CT26 tumor model. The engineered strain was injected intravenously and selectively colonized tumors. The treatment was well-tolerated, and tumors of treated mice showed a modest reduction in tumor growth rate, as well as significantly elevated levels of IL-2 in the tumor. This work demonstrates a workflow for researchers interested in engineering E. coli Nissle for a new class of microbial therapy against cancer.
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献