On the diverse utility of Cu doped ZnS/Fe3O4 nanocomposites

Author:

Kalantari Shirin,Shokuhfar Ali

Abstract

AbstractThe global water crisis is a growing concern, with water pollution from organic dyes being a significant issue. Photocatalysis has emerged as a sustainable and renewable method for removing organic pollutants from wastewater. The study synthesized innovative (2.5, 5 and 10 wt%) Cu doped zinc sulfide/iron oxide nanocomposites using a sonochemical method, which have versatile applications in adsorption and photocatalytic degradation of organic pollutants in wastewater. The nanocomposites underwent comprehensive characterization using powder X-ray diffraction, fourier-transform infrared spectroscopy, photoluminescence spectroscopy, Ultraviolet–Visible spectrophotometer, field emission scanning electron microscopy combined with energy dispersive X-ray spectroscopy and Mott–Schottky analysis. The synthesized samples demonstrate strong adsorption ability to remove RhB and MB dyes. Afterward, we evaluated their capability to degrade Rhodamine B (RhB) dye under UV light exposure. The greatest photocatalytic efficiency was noticed when employing a UV-C lamp in combination with the 10 wt% Cu doped ZnS/Fe3O4 nanocomposite as photocatalyst (98.8% degradation after 60 min irradiation). The Langmuir–Hinshelwood model can be used to describe the pseudo first order kinetics of RhB dye photodegradation. The calculated ban gap values are 4.77, 4.67, and 4.55 eV, for (2.5, 5 and 10 wt%) Cu doped ZnS/Fe3O4, respectively. Furthermore, 10 wt% Cu doped ZnS/Fe3O4 showed good recyclability, with a degradation rate of 89% even after five cycles. Consequently, prepared samples have outstanding photocatalytic activity and can be used as useful adsorbents in water purification.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3