Author:
Chen Jie,Li Yong,Zeng Rong,Liu Junle,Chen An,Hou Liang,Zhao Long,Shahidehpour Mohammad
Abstract
AbstractThe paper presents a fault region identification method for the active distribution network (ADN) with limited PMU. First, PMU configuration and region division strategies are proposed based on the network topology. Next, the difference in three-phase current variations between the normal and fault regions of the ADN is analyzed. A multi-dimensional state monitoring matrix is built using the measured current data. The spectral norm ratio coefficient is constructed based on the 2-norm to lower the complexity of the multi-dimensional state monitoring matrix and quantify the difference in state changes before and after the fault occurs in each region. Then, the fault region is identified by combining each region’s spectral norm ratio coefficient and the change of the current phase. Finally, an IEEE 33-node simulation model is created to simulate faults under different working conditions. According to the simulation results, the suggested approach is less impacted by fault type, neutral point grounding mode, and transition resistance. Furthermore, even if the communication does not match the rigorous synchronization requirements, the proposed method can still complete the fault identification of the distribution network correctly and has high robustness.
Funder
International Science and Technology Cooperation Program of China
Shenzhen Science and Technology R&D Fund for undertaking Major National Science and Technology Project of China
the Science and Technology Projects of China Southern Power Grid, Co., Ltd.
Publisher
Springer Science and Business Media LLC