Oxytocin receptor antagonists as a novel pharmacological agent for reducing smooth muscle tone in the human prostate

Author:

Lee Sophie N.,Kraska Jenna,Papargiris Melissa,Teng Linda,Niranjan Birunthi,Hammar Johanna,Ryan Andrew,Frydenberg Mark,Lawrentschuk Nathan,Middendorff Ralf,Ellem Stuart J.,Whittaker Michael,Risbridger Gail P.,Exintaris Betty

Abstract

AbstractPharmacotherapies for the treatment of Benign Prostatic Hyperplasia (BPH) are targeted at reducing cellular proliferation (static component) or reducing smooth muscle tone (dynamic component), but response is unpredictable and many patients fail to respond. An impediment to identifying novel pharmacotherapies is the incomplete understanding of paracrine signalling. Oxytocin has been highlighted as a potential paracrine mediator of BPH. To better understand oxytocin signalling, we investigated the effects of exogenous oxytocin on both stromal cell proliferation, and inherent spontaneous prostate contractions using primary models derived from human prostate tissue. We show that the Oxytocin Receptor (OXTR) is widely expressed in the human prostate, and co-localises to contractile cells within the prostate stroma. Exogenous oxytocin did not modulate prostatic fibroblast proliferation, but did significantly (p < 0.05) upregulate the frequency of spontaneous contractions in prostate tissue, indicating a role in generating smooth muscle tone. Application of atosiban, an OXTR antagonist, significantly (p < 0.05) reduced spontaneous contractions. Individual tissue responsiveness to both exogenous oxytocin (R2 = 0.697, p < 0.01) and atosiban (R2 = 0.472, p < 0.05) was greater in tissue collected from older men. Overall, our data suggest that oxytocin is a key regulator of inherent spontaneous prostate contractions, and targeting of the OXTR and associated downstream signalling is an attractive prospect in the development of novel BPH pharmacotherapies.

Funder

Deutsche Forschungsgemeinschaft (GRK 1871) and Monash University, Australia, to the International Research Training Group (IRTG) between Justus-Liebig University Giessen and Monash University.

National Health and Medical Research Council

Justus-Liebig-Universität Gießen

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3