Spiking neural networks for predictive and explainable modelling of multimodal streaming data with a case study on financial time series and online news

Author:

AbouHassan Iman,Kasabov Nikola K.,Jagtap Vinayak,Kulkarni Parag

Abstract

AbstractIn a first study, this paper argues and demonstrates that spiking neural networks (SNN) can be successfully used for predictive and explainable modelling of multimodal streaming data. The paper proposes a new method, where both time series and on-line news are integrated as numerical streaming data in the same time domain and then used to train incrementally a SNN model. The connectivity and the spiking activity of the SNN are then analyzed through clustering and dynamic graph extraction to reveal on-line interaction between all input variables in regard to the predicted one. The paper answers the main research question of how to understand the dynamic interaction of time series and on-line news through their integrative modelling. It offers a new method to evaluate the efficiency of using on-line news on the predictive modelling of time series. Results on financial stock time series and online news are presented. In contrast to traditional machine learning techniques, the method reveals the dynamic interaction between stock variables and news and their dynamic impact on model accuracy when compared to models that do not use news information. Along with the used financial data, the method is applicable to a wide range of other multimodal time series and news data, such as economic, medical, environmental and social. The proposed method, being based on SNN, promotes the use of massively parallel and low energy neuromorphic hardware for multivariate on-line data modelling.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3