Highly Sensitive Closed Loop Enclosed Split Ring Biosensor With High Field Confinement for Aqueous and Blood-Glucose Measurements

Author:

Kandwal Abhishek,Igbe Tobore,Li Jingzhen,Liu Yuhang,Li Sinan,Liu Louis W. Y.ORCID,Nie Zedong

Abstract

AbstractThis paper presents a highly sensitive closed loop enclosed split ring biosensor operating in microwave frequencies for measuring blood glucose levels in the human body. The proposed microwave glucose biosensor, working on the principle of high field confinement and concentrated energy, has been tested using both in-vitro and in-vivo methods. This principle allows the sensor to concentrate energy at the surface which results in improved accuracy of measurements. For in-vitro measurements, the biosensor has been tested using de-ionized water glucose solutions of different concentrations. The miniaturized micrometer scale biosensor is fabricated over a thin Si-substrate using photolithographic technique. The biosensor has been designed in a way to operate at desired microwave frequencies. Highly confined fields and concentrated energy inside the closed loop line containing the split ring resonators are responsible for the sensitivity enhancement. This new biosensor has obtained a high sensitivity of 82 MHz/mgmL−1 within the clinical diabetic range during in-vivo testing over the human body. In addition, the subjects (undergoing experiments) steady state has been continuously monitored throughout the experiment which helps in improving the accuracy of the results. The proposed biosensor has further obtained a low detection limit of <0.05 wt.% and can be useful for continuous non-invasive blood glucose monitoring.

Funder

National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3