Author:
Yao Xiaochen,Cao Yun,Zheng Guodi,Devlin Adam T.,Li Xiao,Li Menghan,Tang Siwen,Xu Lingming
Abstract
AbstractWater level conditions are the key factors that affect the growth and distribution of wetland plants. Using Carex cinerascens (C. cinerascens) as the study species, we employ indoor simulations and field surveys. Our results show that C. cinerascens can adapt to rhythmic changes in the water level through different adaptation strategies. Compared to that of the control group, plant growth was better with a 0–0.4 cm/d water level rate, and plant growth was in the 42–56 cm range to that a 1.0–1.4 cm/d water level rate. Furthermore, it was observed that 0–0.4 cm/d was the most suitable growth rate, with 0.6–1.0 cm/d and 0–32 cm being the ideal plant tolerance ranges, and increasing to 1.0–1.4 cm/d and 32–56 cm exceeds the plant tolerance threshold. In the middle and late period of the experiment (25–45 d), the ecological characteristics of the plants changed significantly. For example, the root-to-shoot ratio of the plant in the stable water level reached 26.1. In our field observations, plant biomass can be influenced by a variety of environmental factors. The frequency of the species was the largest at an elevation of 15 m, and the growth status of the dominant and companion species of C. cinerascens was weakened with an increase in soil moisture content. The suitable water content for C. cinerascens growth was 27.6–57.3%, the distribution elevation was 12.54–16.59 m, and the optimum elevation was 13.56–15.54 m. The study is expected to provide a reference for wetland ecology research and wetland protection and restoration, a theoretical reference for the coordination of water resource development and utilization of Poyang Lake and ecological protection of important lakes and wetlands, and an important scientific basis for wetland hydrologic regulation, ecological restoration and biodiversity conservation.
Funder
Natural Scientific Foundation of Jiangxi Province
Natural Scientific Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献