Modeling the influence of bacteria concentration on the mechanical properties of self-healing concrete (SHC) for sustainable bio-concrete structures

Author:

Onyelowe Kennedy C.,Adam Ali F. H.,Ulloa Nestor,Garcia Cesar,Andrade Valle Alexis Ivan,Zúñiga Rodríguez María Gabriela,Zarate Villacres Andrea Natali,Shakeri Jamshid,Anyaogu Lewechi,Alimoradijazi Mohammadreza,Ganasen Nakkeeran

Abstract

AbstractIn this research paper, the intelligent learning abilities of the gray wolf optimization (GWO), multi-verse optimization (MVO), moth fly optimization, particle swarm optimization (PSO), and whale optimization algorithm (WOA) metaheuristic techniques and the response surface methodology (RSM) has been studied in the prediction of the mechanical properties of self-healing concrete. Bio-concrete technology stimulated by the concentration of bacteria has been utilized as a sustainable structural concrete for the future of the built environment. This is due to the recovery tendency of the concrete structures after noticeable structural failures. However, it requires a somewhat expensive exercise and technology to create the medium for the growth of the bacteria needed for this self-healing ability. The method of data gathering, analysis and intelligent prediction has been adopted to propose parametric relationships between the bacteria usage and the concrete performance in terms of strength and durability. This makes is cheaper to design self-healing concrete structures based on the optimized mathematical relationships and models proposed from this exercise. The performance of the models was tested by using the coefficient of determination (R2), root mean squared errors, mean absolute errors, mean squared errors, variance accounted for and the coefficient of error. At the end of the prediction protocol and model performance evaluation, it was found that the classified metaheuristic techniques outclassed the RSM due their ability to mimic human and animal genetics of mutation. Furthermore, it can be finally remarked that the GWO outclassed the other methods in predicting the concrete slump (Sl) with R2 of 0.998 and 0.989 for the train and test, respectively, the PSO outclassed the rest in predicting the flexural strength with R2 of 0.989 and 0.937 for train and test, respectively and the MVO outclassed the others in predicting the compressive strength with R2 of 0.998 and 0.958 for train and test, respectively.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3