Introducing machine learning model to response surface methodology for biosorption of methylene blue dye using Triticum aestivum biomass

Author:

Kumari Sheetal,Verma Anoop,Sharma Pinki,Agarwal Smriti,Rajput Vishnu D.,Minkina Tatiana,Rajput Priyadarshani,Singh Surendra Pal,Garg Manoj Chandra

Abstract

AbstractA major environmental problem on a global scale is the contamination of water by dyes, particularly from industrial effluents. Consequently, wastewater treatment from various industrial wastes is crucial to restoring environmental quality. Dye is an important class of organic pollutants that are considered harmful to both people and aquatic habitats. The textile industry has become more interested in agricultural-based adsorbents, particularly in adsorption. The biosorption of Methylene blue (MB) dye from aqueous solutions by the wheat straw (T. aestivum) biomass was evaluated in this study. The biosorption process parameters were optimized using the response surface methodology (RSM) approach with a face-centred central composite design (FCCCD). Using a 10 mg/L concentration MB dye, 1.5 mg of biomass, an initial pH of 6, and a contact time of 60 min at 25 °C, the maximum MB dye removal percentages (96%) were obtained. Artificial neural network (ANN) modelling techniques are also employed to stimulate and validate the process, and their efficacy and ability to predict the reaction (removal efficiency) were assessed. The existence of functional groups, which are important binding sites involved in the process of MB biosorption, was demonstrated using Fourier Transform Infrared Spectroscopy (FTIR) spectra. Moreover, a scan electron microscope (SEM) revealed that fresh, shiny particles had been absorbed on the surface of the T. aestivum following the biosorption procedure. The bio-removal of MB from wastewater effluents has been demonstrated to be possible using T. aestivum biomass as a biosorbent. It is also a promising biosorbent that is economical, environmentally friendly, biodegradable, and cost-effective.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3